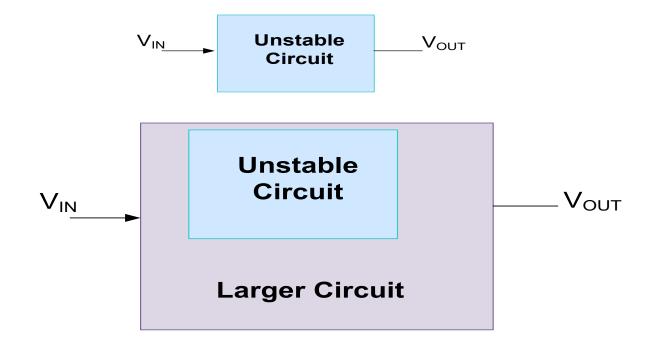
EE 508 Lecture 5

- Dead Networks
- Root Characterizations
- Scaling, Normalization and Transformations
- Degrees of Freedom and Systematic Design

Review from Last Time

Theorem ?:

If a circuit is unstable, then if this circuit is included as a subcircuit in a larger circuit structure, the larger circuit will also be unstable.

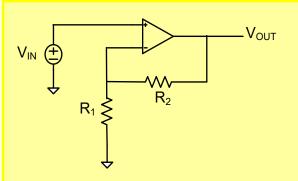


Proof:

This theorem is not valid though many circuit and filter designers believe it to be true!

Review from Last Time Gain, Bandwidth and GB

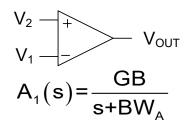
Summary of Effects of GB on Basic Inverting and Noninverting Amplifiers



$$K_0 = 1 + \frac{R_2}{R_1}$$

$$BW = \frac{GB}{K_0}$$

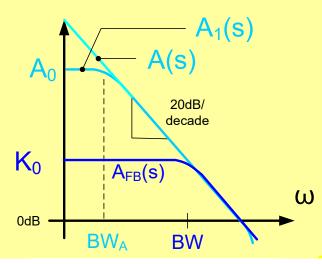
$$A_{FB}(s) = \frac{K_0}{1+s\frac{K_0}{GB}}$$

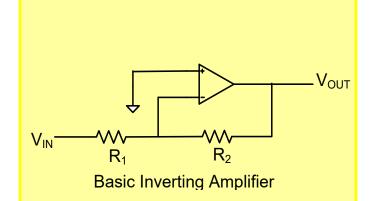


$$GB = A_0 \bullet BW_A$$

$$A(s) = \frac{GB}{s}$$

Adequate model for most applications





$$K_0 = \frac{R_2}{R_1}$$

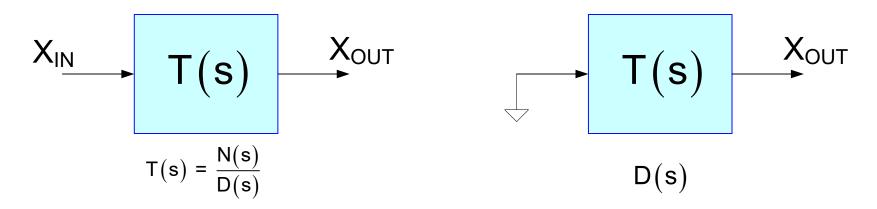
$$BW = \frac{GB}{1+K_0}$$

$$A_{FB}(s) = -\frac{K_0}{1+s\frac{(1+K_0)}{GB}}$$

Filter Concepts and Terminology

- 2-nd order polynomial characterization
- Biquadratic Factorization
- Op Amp Modeling
- Stability and Instability
- Roll-off characteristics
- Distortion
- Dead Networks
 - Root Characterization
 - Scaling, normalization, and transformation

Dead Networks



The "dead network" of any linear circuit is obtained by setting ALL independent sources to zero.

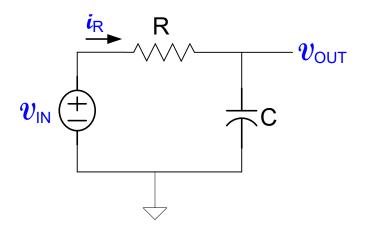
- Replace independent current sources with opens
- Replace independent voltage sources with shorts
- Dependent sources remain intact

D(s) is characteristic of the dead network and is independent of where the excitation is applied or where the response is measured

D(s) is the same for ALL transfer functions of a given "dead network" (if written in integer monic or unity constant form)

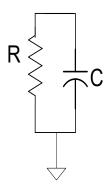
Dead Networks

Example:



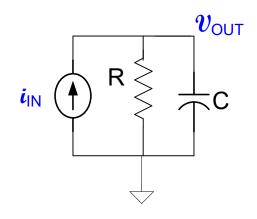
$$T(s) = \frac{1}{1 + RCs}$$

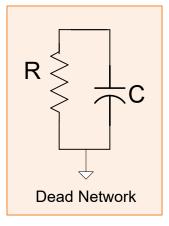
$$D(s) = 1+RCs$$



Dead Network

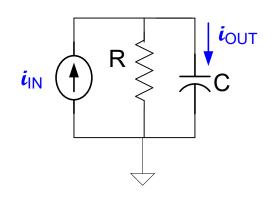
Dead Networks

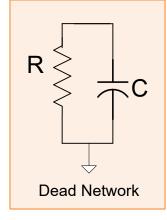




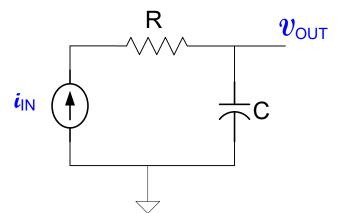
$$\frac{v_{\text{OUT}}}{i_{\text{IN}}}$$
 = T(s) = $\frac{R}{1+RCs}$

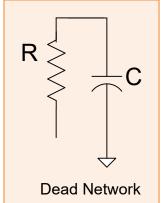
$$D(s) = 1+RCs$$





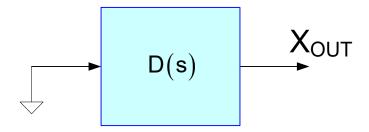
$$\frac{i_{OUT}}{i_{IN}} = T(s) = \frac{RCs}{1 + RCs}$$
$$D(s) = 1 + RCs$$





$$\frac{\mathbf{v}_{\text{OUT}}}{\mathbf{i}_{\text{IN}}} = T(s) = \frac{1}{Cs}$$
$$D(s) = Cs$$

Note: This has a different dead network!



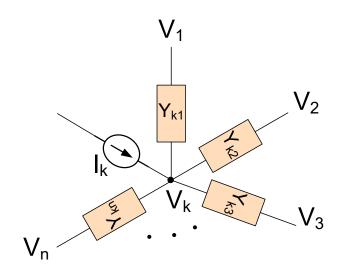
This is an important observation. Why is it true?

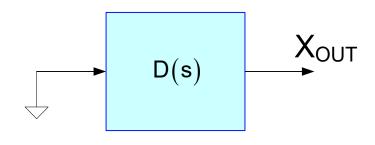
Plausibility argument:

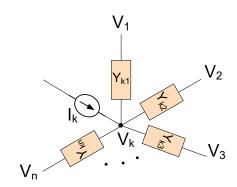
Consider a network with only admittance elements and independent current sources

At node k, can write the equation

$$\sum_{\substack{i=1\\i\neq k}}^{n} \mathbf{Y}_{ki} \left(\mathbf{V}_{k} - \mathbf{V}_{i} \right) = \mathbf{I}_{k}$$







Plausibility argument:

Doing this at each node results in the set of equations

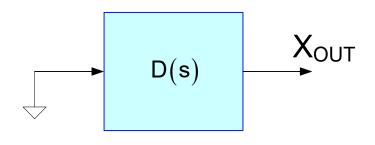
$$\begin{bmatrix} Y_{11} & Y_{12} & \dots & Y_{1n} \\ Y_{21} & Y_{22} & \dots & Y_{2n} \\ \vdots & & & & \\ Y_{n1} & Y_{n2} & \dots & Y_{nn} \end{bmatrix} \bullet \begin{bmatrix} V_1 \\ V_2 \\ \vdots \\ V_n \end{bmatrix} = \begin{bmatrix} I_1 \\ I_2 \\ \vdots \\ I_n \end{bmatrix}$$

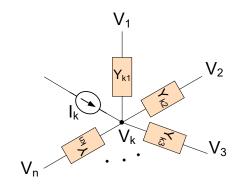
In matrix form

$$Y \bullet V = I$$

The nodal voltages are given by

$$V = Y^{-1} \bullet I$$



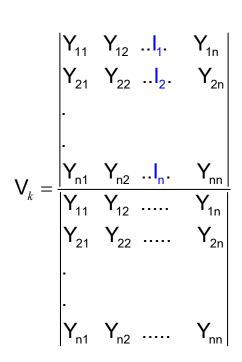


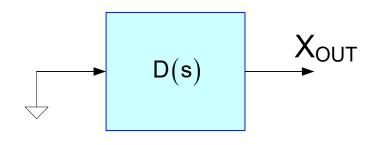
Plausibility argument:

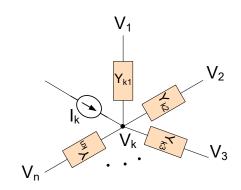
$$V = Y^{-1} \bullet I$$

The nodal voltage V_k in this solution is given by the ratio of two determinates where the one in the numerator is obtained by replacing the kth column with the excitation vector and the one in the denominator is the determinate of the indefinite admittance matrix \mathbf{Y}

Note the denominator is the same for all nodal voltages and is independent of the excitations – that is, it is dependent only upon the dead network





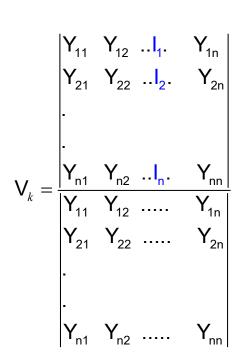


Plausibility argument:

Note the denominator is the same for all nodal voltages and is independent of the excitations – that is, it is dependent only upon the dead network

Thus all branch voltages and all branch currents have the same denominator and this (after multiplying through by the correct power of s to make V_k a rational fraction) is the characteristic polynomial D(s)

This concept can be extended to include independent voltage sources as well as dependent sources



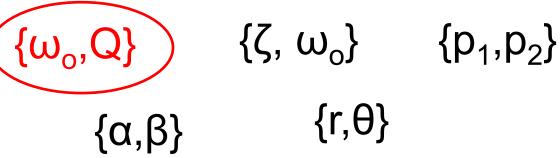
Filter Concepts and Terminology

- 2-nd order polynomial characterization
- Biquadratic Factorization
- Op Amp Modeling
- Stability and Instability
- Roll-off characteristics
- Distortion
- Dead Networks
- Root Characterization
 - Scaling, normalization, and transformation

From previous lecture

2-nd order polynomial characterization

{a,b}



Alternate equivalent parameter sets

Widely used interchangeably

Easy mapping from one to another

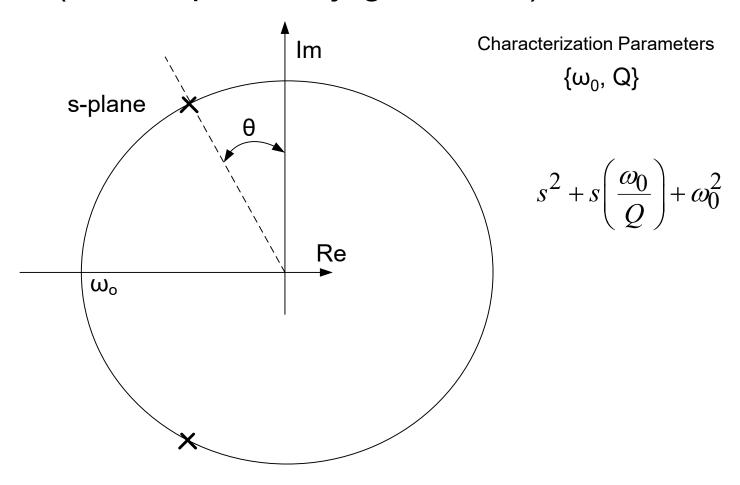
Defined irrespective of whether polynomial appears in numerator or denominator of transfer function

If order is greater than 2, often multiple root pairing options so these parameter sets will not be unique for a given polynomial or transfer function

If cc roots exist, these will almost always be paired together (unique)

Root characterization in s-plane

(for complex-conjugate roots)

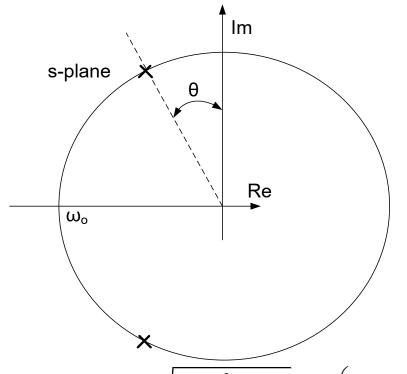


1-1 relationship between angle θ and Q of root

For low Q, θ is large For high Q, θ is small

Root characterization in s-plane

(for complex-conjugate roots)



$$s^2 + s \left(\frac{\omega_0}{Q}\right) + \omega_0^2$$

for θ =45°, Q=1/ $\sqrt{2}$

for $\theta = 90^{\circ}$, Q=1/2

roots located at

$$s = -\frac{\omega_0}{2Q} \pm \frac{1}{2} \sqrt{\left(\frac{\omega_0}{Q}\right)^2 - 4\omega_0^2} = \omega_0 \left(-\frac{1}{2Q} \pm \frac{1}{2} \sqrt{\left(\frac{1}{Q}\right)^2 - 4}\right)$$

for Q>0.5 the roots have an imaginary component

$$\theta = \tan^{-1} \left(\frac{1}{\sqrt{4Q^2 - 1}} \right)$$

Filter Concepts and Terminology

- 2-nd order polynomial characterization
- Biquadratic Factorization
- Op Amp Modeling
- Stability and Instability
- Roll-off characteristics
- Distortion
- Dead Networks
- Root Characterization
- Scaling, normalization, and transformation

Scaling, Normalization and Transformations

- Frequency scaling
- Frequency Normalization
 - Impedance scaling
 - Transformations
 - LP to BP
 - LP to HP
 - LP to BR

Scaling, Normalization and Transformations

Frequency normalization:

$$s_n = \frac{s}{\omega_0}$$

Frequency scaling:

$$s = \omega_0 s_n$$

Purpose:

 ω_0 independent approximations

 ω_0 independent synthesis

Simplifies analytical expressions for T(s)

Simplifies component values in synthesis

Use single table of normalized filter circuits for given normalized approximating function

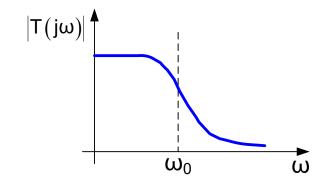
Note: The normalization subscript "n" is often dropped

$$T(s) = \frac{6000}{s + 6000}$$

Define ω_0 =6000

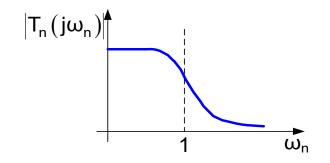
$$s_n = \frac{s}{\omega_0}$$

$$T(s) = \frac{\omega_0}{s + \omega_0}$$

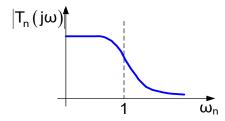


Normalized transfer function:

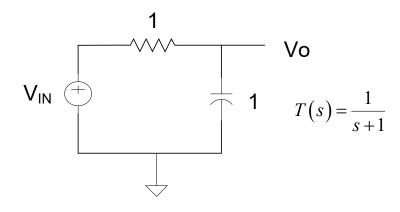
$$T_n(s_n) = \frac{1}{s_n + 1}$$



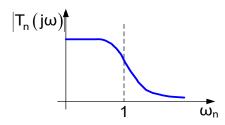
$$T_n(s_n) = \frac{1}{s_n + 1}$$



Synthesis of normalized function



$$T_n(s_n) = \frac{1}{s_n + 1}$$



Frequency scaling transfer function by ω_0

$$s = \omega_0 s_n$$

$$T(s) = \frac{1}{\left(\frac{s}{\omega_0}\right) + 1} \qquad T(s) = \frac{\omega_0}{s + \omega_0}$$

Frequency scaling circuit by ω_0 (actually magnitude of ω_0) (scale all energy storage elements in circuit)

$$C = C_{n}/\omega_{0}$$

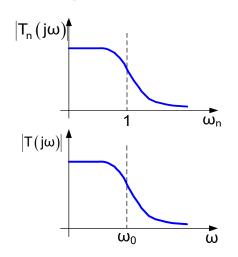
$$V_{IN}$$

$$T(s) = \frac{\omega_{0}}{s + \omega_{0}}$$

Frequency scaled transfer function is that of the frequency scaled circuit!

$$T_n(s_n) = \frac{1}{s_n + 1}$$

$$T(s) = \frac{\omega_0}{s + \omega_0}$$



Frequency scaling / normalization does not change the shape of the transfer function, it only scales the frequency axis linearly

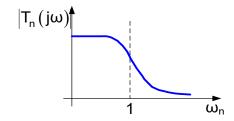
The frequency scaled circuit can be obtained from the normalized circuit simply by scaling the frequency dependent impedances (up or down) by the scaling factor

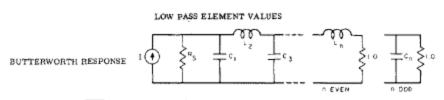
This makes the use of filter design tables for the design of lowpass filters practical whereby the circuits in the table all have a normalized band edge of 1 rad/sec.

Frequency normalization/scaling

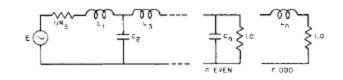
Example: Table for passive LC ladder Butterworth filter with 3dB band edge of 1 rad/sec and resistive source/load terminations

$$T_n(s_n) = \frac{1}{s_n + 1}$$





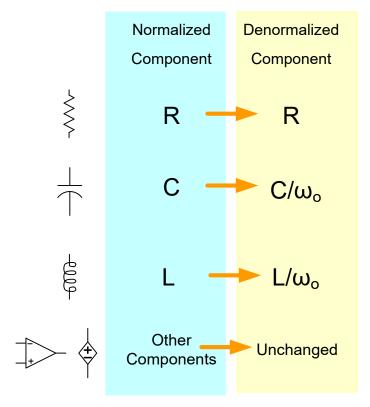
n.	R _s	c ₁	L ₂	C.3	L ₄
2	1.3099 1.1111 1.7500 1.4296 1.6667 2.3000 2.5030 3.3333 5.0000 10.2000 INF.	1.4142 1.0353 0.8485 0.6971 0.5657 0.3419 0.2447 0.1557 0.0743 1.4142	1.4142 1.9352 2.1213 2.4397 2.8284 3.3461 4.0951 5.3126 7.7067 14.8136 0.7071		
3	1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1000 1NF.	1.0000 0.8342 0.3442 0.3142 1.0225 1.1811 1.4256 1.8380 2.6687 5.1672	2.0000 1.6332 1.3840 1.1452 0.9650 0.7780 0.6062 0.4396 0.2842 0.1377 1.3333	1.0000 1.5994 1.9259 2.2774 2.7024 3.2642 4.0642 5.3634 7.9102 15.4554 0.5000	
4	1.0000 1.1111 1.2500 1.4597 7.0000 2.5000 3.3333 5.0000 14.0000 INF.	0.7654 0.4657 0.3887 0.2690 0.2175 0.1692 0.1692 0.1692 0.0392 1.5307	1.5478 1.5924 1.5946 1.8648 2.1029 2.4524 2.9854 3.8826 5.6835 11.0962 1.5772	1.8475 1.7439 1.5119 1.2913 1.0824 0.8826 0.6911 0.5072 0.3307 0.1614 1.0824	0.7654 1.4690 1.8109 2.1752 2.0131 3.1865 4.0094 5.1361 7.9397 15.6421 0.3827
n	1/R _s	L ₁	c ₂	1.3	C4



Frequency normalization/scaling

The frequency scaled circuit can be obtained from the normalized circuit simply by scaling the frequency dependent impedances (up or down) by the scaling factor

Component denormalization by factor of ω_0



Component values of energy storage elements are scaled down by a factor of ω_0

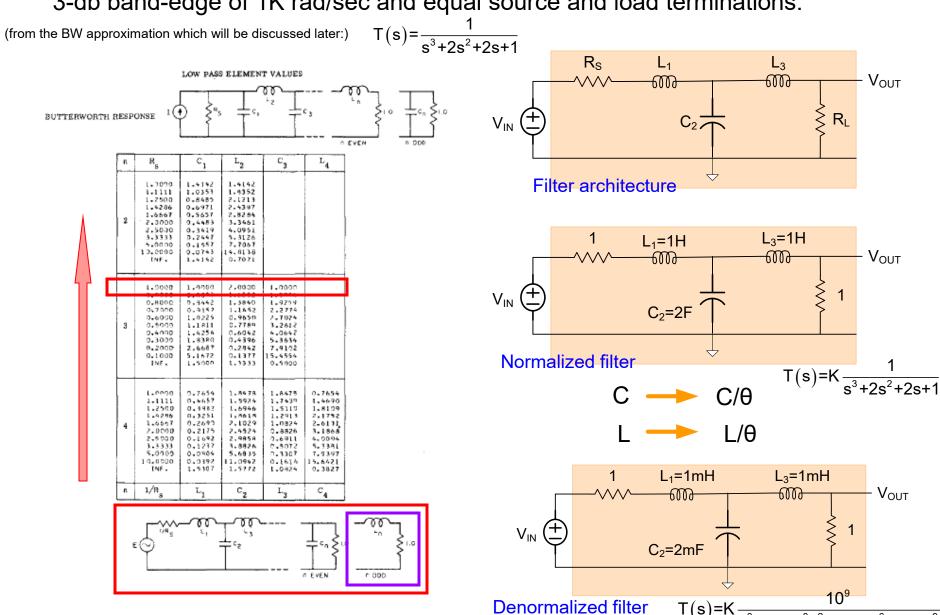
Desgin Strategy

Theorem: A circuit with transfer function T(s) can be obtained from a circuit with normalized transfer function $T_n(s_n)$ by denormalizing all frequency dependent components.

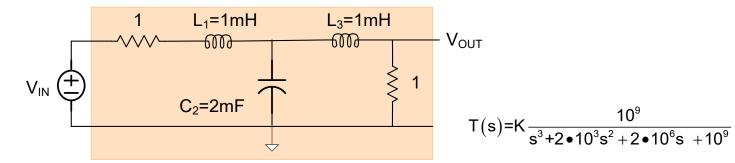
$$C \longrightarrow C/\omega_o$$

 $L \longrightarrow L/\omega_o$

Example: Design a V-V passive 3rd-order Lowpass Butterworth filter with a 3-db band-edge of 1K rad/sec and equal source and load terminations.



Example: Design a V-V passive 3rd-order Lowpass Butterworth filter with a band-edge of 1K Rad/Sec and equal source and load terminations.



Is this solution practical?

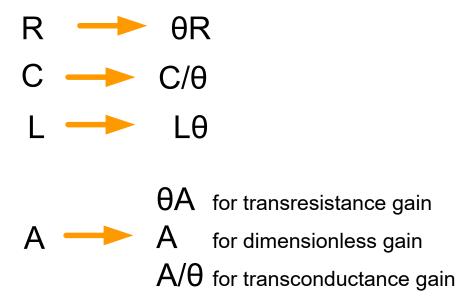
Some component values are too big and some are too small!

Filter Concepts and Terminology

- Frequency scaling
- Frequency Normalization
- Impedance scaling
 - Transformations
 - LP to BP
 - LP to HP
 - LP to BR

Impedance Scaling

Impedance scaling of a circuit is achieved by multiplying ALL impedances in the circuit by a constant



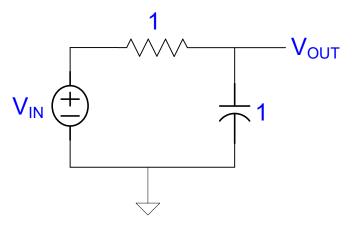
Impedance Scaling

Theorem: If all impedances in a circuit are scaled by a constant θ , then

- a) All dimensionless transfer functions are unchanged
- b) All transresistance transfer functions are scaled by θ
- c) All transconductance transfer functions are scaled by θ^{-1}

Impedance Scaling

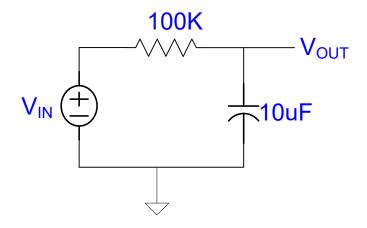
Example:



$$T(s) = \frac{1}{s+1}$$

T(s) is dimensionless

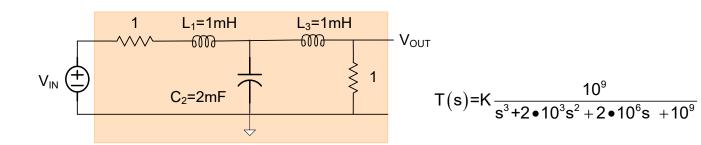
Impedances scaled by θ =10⁵



$$T(s) = \frac{1}{s+1}$$

Note second circuit much more practical than the first

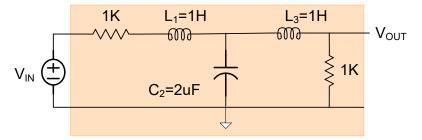
Example: Design a V-V passive 3rd-order Lowpass Butterworth filter with a band-edge of 1K Rad/Sec and equal source and load terminations.



Is this solution practical?

Some component values are too big and some are too small!

Impedance scale by θ =1000 R \longrightarrow θ R C \longrightarrow C/θ L \longrightarrow θ L



$$T(s)=K\frac{10^9}{s^3+2 \cdot 10^3 s^2 + 2 \cdot 10^6 s + 10^9}$$

Component values more practical

Transformations

- -LP to BP
- -LP to HP
- -LP to BR

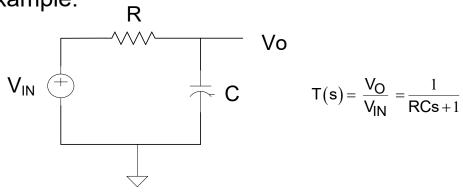
It can be shown the standard HP, BP, and BR approximations can be obtained by a frequency transformation of a standard LP approximating function

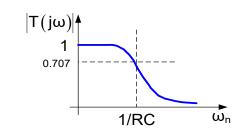
Will address the LP approximation first, and then provide details about the frequency transformations

Typical approach to lowpass filter design

- 1. Obtain normalized approximating function
- 2. Synthesize circuit to realize normalized approximating function
- 3. Denormalize circuit obtained in step 2
- 4. Impedance scale to obtain acceptable component values

Degrees of Freedom





Circuit has two design variables: {R,C}

One key controllable performance characteristic of this circuit: $\omega_0 = \frac{1}{RC}$ (there could be others such as total area, magnitude of impedance,...)

If ω_0 is specified for a design, circuit has (and nothing else is specified)

2 design variables

1 constraint

1 Degree of Freedom

Performance/Cost strongly affected by how degrees of freedom in a design are used!

Degrees of Freedom

The number of degrees of freedom in the design of a system is the difference between the total number of design variables and the number of constraints for the design.

Important to recognize the number of degrees of freedom available in a design and the number of constraints.

- If the number of design variables is less than the number of constraints in a specific system, the system is over-constrained
- Even if the number of degrees of freedom is greater than or equal to
 1, a solution may not exist

Stay Safe and Stay Healthy!

End of Lecture 5