
EE 508

Lecture 5

• Dead Networks

• Root Characterizations

• Scaling, Normalization and Transformations

• Degrees of Freedom and Systematic Design



Theorem ?:

If a circuit is unstable, then if this circuit is included as a subcircuit in a 

larger circuit structure, the larger circuit will also be unstable.

Proof:
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This theorem is not valid though many circuit and filter 

designers believe it to be true ! 

Review from Last Time



Gain, Bandwidth and GB
Summary of Effects of GB on Basic Inverting and Noninverting Amplifiers
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Filter Concepts and Terminology

• 2-nd order polynomial characterization

• Biquadratic Factorization

• Op Amp Modeling

• Stability and Instability

• Roll-off characteristics

• Distortion

• Dead Networks

• Root Characterization

• Scaling, normalization, and transformation



Dead Networks

XIN XOUT( )T s
XOUT( )T s

The “dead network” of any linear circuit is obtained by setting ALL 

independent sources to zero.

• Replace independent current sources with opens

• Replace independent voltage sources with shorts

• Dependent sources remain intact
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D s ( )D s

D(s) is characteristic of the dead network and is independent of where 

the excitation is applied or where the response is measured

D(s) is the same for ALL transfer functions of a given “dead network”

(if written in integer monic or unity constant form)



Dead Networks

R
C

VIN

VOUT

R

C

iR

( )
1

T s  = 
1+RCs

( )D s  = 1+RCs

Example:

Dead Network



R
CiIN

VOUT

R
CiIN

iOUT

R

C

VOUT

iIN

Dead Networks

( ) OUT

IN

R
 = T s  = 

1+RCs

V

i 

( )D s  = 1+RCs

( ) OUT

IN

RCs
 = T s  = 

1+RCs

i

i 

( )D s  = 1+RCs

( ) OUT

IN

1
 = T s  = 

Cs

V

i 

( )D s  = Cs

Note:  This has a different dead network!

R
C

Dead Network

R
C

Dead Network

R
C

Dead Network



XOUT
( )D s

This is an important observation.  Why is it true? 

D(s) is the same for ALL transfer functions of a given “dead network”

Plausibility argument:
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Consider a network with only admittance 

elements and independent current sources

At node k, can write the equation
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D(s) is the same for ALL transfer functions of a given “dead network”

Plausibility argument:
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Doing this at each node results in the set of equations

•Y V =I
In matrix form

The nodal voltages are given by

•-1V=Y I
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D(s) is the same for ALL transfer functions of a given “dead network”

Plausibility argument:
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The nodal voltage Vk in this solution is given by

the ratio of two determinates where the one in 

the numerator is obtained by replacing the kth 

column with the excitation vector and the one in 

the denominator is the determinate of the 

indefinite admittance matrix Y
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Note the denominator is the same for all nodal 

voltages and is independent of the excitations – 

that is, it is dependent only upon the dead network
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D(s) is the same for ALL transfer functions of a given “dead network”

Plausibility argument:
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Note the denominator is the same for all nodal 

voltages and is independent of the excitations – 

that is, it is dependent only upon the dead network

Thus all branch voltages and all branch currents have 

the same denominator and this (after multiplying through by the 

correct power of s to make Vk a rational fraction) is the characteristic 

polynomial D(s)

This concept can be extended to include 

independent voltage sources as well as dependent 

sources



Filter Concepts and Terminology

• 2-nd order polynomial characterization

• Biquadratic Factorization

• Op Amp Modeling

• Stability and Instability

• Roll-off characteristics

• Distortion

• Dead Networks

• Root Characterization

• Scaling, normalization, and transformation



2-nd order polynomial 

characterization
{a,b} {ωo,Q} {ζ, ωo} {p1,p2}

{α,β} {r,θ}

Alternate equivalent parameter sets

Widely used interchangeably

Easy mapping from one to another

Defined irrespective of whether polynomial appears in numerator or 

denominator of transfer function

If order is greater than 2, often multiple root pairing options so these 

parameter sets will not be unique for a given polynomial or transfer function

If cc roots exist, these will almost always be paired together (unique)

From previous lecture



Root characterization in s-plane
(for complex-conjugate roots)

For low Q,     θ is large

For high Q,    θ is small

1-1 relationship between angle θ and Q of root
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Root characterization in s-plane
(for complex-conjugate roots)

for θ=45o,  Q=1/√2 
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roots located at

for θ=90o,  Q=1/2 

for Q>0.5 the roots have an imaginary component 



Filter Concepts and Terminology

• 2-nd order polynomial characterization

• Biquadratic Factorization

• Op Amp Modeling

• Stability and Instability

• Roll-off characteristics

• Distortion

• Dead Networks

• Root Characterization

• Scaling, normalization, and transformation



Scaling, Normalization and 

Transformations

• Frequency scaling

• Frequency Normalization

• Impedance scaling

• Transformations
– LP to BP

– LP to HP

– LP to BR



Scaling, Normalization and 

Transformations
Frequency normalization:

0
n

s
s
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Frequency scaling: 0 ns s=

Purpose:

ω0 independent approximations

ω0 independent synthesis

Simplifies analytical expressions for T(s)

Simplifies component values in synthesis

Use single table of normalized filter circuits for given normalized 

approximating function

Note:   The normalization subscript “n” is often dropped



Frequency normalization/scaling example
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Frequency normalization/scaling example
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Frequency normalization/scaling example
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Frequency scaling transfer function by ω0
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Frequency scaling circuit by ω0 (actually magnitude of ω0)   (scale all energy storage elements in circuit)
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Frequency scaled transfer function is that of the frequency scaled circuit !



Frequency normalization/scaling example
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Frequency scaling / normalization does not change the shape of the transfer 

function, it only scales the frequency axis linearly

The frequency scaled circuit can be obtained from the normalized circuit simply 

by scaling the frequency dependent impedances (up or down) by the scaling 

factor

This makes the use of filter design tables for the design of lowpass filters practical 

whereby the circuits  in the table all have a normalized band edge of 1 rad/sec.





Frequency normalization/scaling
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Example:  Table for passive LC ladder Butterworth filter with 3dB band edge of 1 rad/sec 

and resistive source/load terminations



Frequency normalization/scaling
The frequency scaled circuit can be obtained from the normalized circuit simply 

by scaling the frequency dependent impedances (up or down) by the scaling 

factor

Component denormalization by factor of ω0

Component values of energy storage elements are scaled down by a factor of ω0
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Desgin Strategy

Theorem:  A circuit with transfer function T(s) can be 

obtained from a circuit with normalized transfer function 

Tn(sn)  by denormalizing all frequency dependent 

components.  
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Example:   Design a V-V passive 3rd-order Lowpass Butterworth filter with a 

3-db band-edge of 1K rad/sec and equal source and load terminations.
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(from the BW approximation which will be discussed later:)



Example:   Design a V-V passive 3rd-order Lowpass Butterworth filter with a 

band-edge of 1K Rad/Sec and equal source and load terminations.

Is this solution practical?

Some component values are too big and some are too small !
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Filter Concepts and Terminology

• Frequency scaling

• Frequency Normalization

• Impedance scaling

• Transformations
– LP to BP

– LP to HP

– LP to BR



Impedance Scaling

Impedance scaling of a circuit is achieved by multiplying 

ALL impedances in the circuit by a constant 
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θA  for transresistance gain

A    for dimensionless gain

A/θ for transconductance gain



Impedance Scaling

Theorem:  If all impedances in a circuit are scaled by a 

constant θ, then 

a)  All dimensionless transfer functions are unchanged

b)  All transresistance transfer functions are scaled by θ

c)  All transconductance transfer functions are scaled by θ-1



Impedance Scaling
Example:
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Note second circuit much more practical than the first



Example:   Design a V-V passive 3rd-order Lowpass Butterworth filter with a 

band-edge of 1K Rad/Sec and equal source and load terminations.

Is this solution practical?

Some component values are too big and some are too small !
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Impedance scale by θ=1000
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Component values more practical
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Transformations

–LP to BP

–LP to HP

–LP to BR

It can be  shown the standard HP, BP, and BR approximations can be 

obtained by a frequency transformation of a standard LP approximating 

function

Will address the LP approximation first, and then provide details about the 

frequency transformations



Typical approach to lowpass filter design

1. Obtain normalized approximating function

2. Synthesize circuit to realize normalized approximating function

3. Denormalize circuit obtained in step 2

4. Impedance scale to obtain acceptable component values



Degrees of Freedom
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Circuit has two design variables:   {R,C}

One key controllable performance characteristic of this circuit: 0
1
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If ω0 is specified for a design, circuit has 

2 design variables

1 constraint

1 Degree of Freedom

Performance/Cost strongly affected by how degrees of freedom in a 

design are used !

(and nothing else is specified)

(there could be others such as total area, magnitude of impedance,…)

Example:



Degrees of Freedom
The number of degrees of freedom in the design of a 

system is the difference between the total number of 

design variables and the number of constraints for 

the design.

Important to recognize the number of degrees of 

freedom available in a design and the number of 

constraints.

• If the number of design variables is less than the number of 

constraints in a specific system, the system is over-constrained 

• Even if the number of degrees of freedom is greater than or equal to 

1, a solution may not exist



Stay Safe and Stay Healthy !



End of Lecture 5
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